Monday, May 18, 2009

Logarithm

In mathematics, the logarithm of a number to a given base is the power or exponent to which the base must be raised in order to produce the number.
For example, the logarithm of 1000 to the base 10 is 3, because 3 is how many 10s you must multiply to get 1000: thus 10 × 10 × 10 = 1000; the base 2 logarithm of 32 is 5 because 5 is how many 2s one must multiply to get 32: thus 2 × 2 × 2 × 2 × 2 = 32. In the language of exponents: 103 = 1000, so log101000 = 3, and 25 = 32, so log232 = 5.
The logarithm of x to the base b is written logb(x) or, if the base is implicit, as log(x). So, for a number x, a base b and an exponent y,

An important feature of logarithms is that they reduce multiplication to addition, by the formula:

That is, the logarithm of the product of two numbers is the sum of the logarithms of those numbers. The use of logarithms to facilitate complicated calculations was a significant motivation in their original development.

Algebra

This article is about the branch of mathematics. For other uses, see Algebra (disambiguation).
Algebra is a branch of mathematics concerning the study of structure, relation, and quantity. Together with geometry, analysis, combinatorics, and number theory, algebra is one of the main branches of mathematics. Elementary algebra is often part of the curriculum in secondary education and provides an introduction to the basic ideas of algebra, including effects of adding and multiplying numbers, the concept of variables, definition of polynomials, along with factorization and determining their roots.
Algebra is much broader than elementary algebra and can be generalized. In addition to working directly with numbers, algebra covers working with symbols, variables, and set elements. Addition and multiplication are viewed as general operations, and their precise definitions lead to structures such as groups, rings and fields.